Belgisch onderzoek bewijst 430.000 jaar oude meteorietinslag boven Antarctica
Belangrijke geologische ontdekking in Science Advances
Deze buitenaardse partikels (sferische gecondenseerde deeltjes) werden gevonden tijdens de 2017-2018 BELAM (Belgian Antarctic Meteorites) expeditie die werd gefinancierd door het federaal wetenschapsbeleid (BELSPO) en georganiseerd vanuit het Belgische Antarctische Prinses Elisabethstation. Op de top van Walnumfjellet in het Sør Rondanegebergte, Oost-Antarctica werden deze partikels teruggevonden die wijzen op een ongewone ontploffing van een bijzonder grote meteoriet in de lucht. Na doorgang door de atmosfeer kunnen meteoroïden van meer dan 100 meter een impactkrater vormen in korstgesteente, maar nog vaker zullen meteorieten ontploffen in de lucht en een krachtige en destructieve schokgolf veroorzaken. Het gekendste voorbeeld van zo’n gebeurtenenis is de veel kleinere Chelyabinskinslag boven Rusland in 2013, waarbij enorm veel ramen werden vernield. Tijdens de Tunguska-gebeurtenis, ook in Rusland, in 1908, werd een nog grotere schokgolf veroorzaakt die de bomen over een oppervlakte van 20 km2 heeft omvergeworpen en over meer dan honderd kilometer schade heeft aangericht. ‘Inslagen zoals deze vinden elke 1000 tot 5000 jaar plaats. Het is cruciaal om te begrijpen hoe zulke inslagen voorkomen in de geschiedenis van de aarde en wat de effecten ervan op de omgeving zijn’, verduidelijkt Flore Van Maldeghem, doctoraatstudent aan de Vrije Universiteit Brussel en mede-auteur van de studie. ‘Indien zo’n ontploffing plaats zou vinden boven een regio met een grote bevolking, zou dit absoluut catastrofaal zijn, met enorm veel slachtoffers’, voegt VUB professor Philippe Claeys toe.
Buitenaards
‘De chondritische chemische samenstelling en het hoge nikkelgehalte van de brokstukken wijzen erop dat de teruggevonden deeltjes niet van de aarde afkomstig zijn. Hun unieke zuurstofisotopenverhouding wijst er dan weer op dat ze tijdens hun vorming in de inslagwolk reageerden met zuurstof afkomstig van Antarctisch ijs’, vat professor Steven Goderis samen. Dit kan alleen als de explosie in de lucht dicht genoeg bij het ijsoppervlak gebeurde en door de schokgolf het ijs smolt en verdampte, waarbij het zich vermengde met de meteorietpartikels in de inslagwolk. Een dergelijke gebeurtenis kan enkel het gevolg zijn van het met hoge snelheid binnendringen in de atmosfeer van een asteroïde van ten minste 100 meter groot. Dit soort explosie relatief dicht bij het aardoppervlak is qua vernietigingskracht minder groot dan de vorming van een inslagkrater, maar nog steeds veel groter dan wanneer deze plaatsvindt op grote hoogte (bijvoorbeeld tussen de 30 en 50 km boven het zeeniveau in het geval van Chelyabinsk).
Het onderzoek, gepubliceerd in het wetenschappelijke tijdschrift Science Advances, is een belangrijke ontdekking in het geologische vakgebied, waar bewijsmateriaal voor dergelijke gebeurtenissen schaars is. Dergelijke inslagpartikels zijn namelijk moeilijk te identificeren en te karakteriseren. ‘Maar in dit geval konden deze door de atypische vorm van de condensatiedeeltjes (zie foto) relatief gemakkelijk onderscheiden worden van andere buitenaardse stofdeeltjes die we op Antarctica terugvinden, zoals micrometeorieten en microtektieten. De resultaten van dit onderzoek kunnen bijgevolg helpen bij de identificatie van gelijkaardige gebeurtenissen in het geologische verleden’, aldus VUB-doctoraatstudent Bastien Soens, co-auteur van de studie.
De studie onderstreept het belang om de dreiging van middelgrote asteroïden zo goed mogelijk in kaart te brengen, aangezien toekomstige vergelijkbare objecten waarschijnlijk in de atmosfeer zullen exploderen en een schokgolf kunnen genereren. Als deze explosie te dicht bij het aardoppervlak plaatsvindt, kan de schade groot zijn, zeker in dichtbevolkte gebieden. Het is daarom belangrijk om te proberen dit soort gebeurtenissen in de loop van de tijd te identificeren in andere geologische contexten, zoals sedimentkernen, om hun frequentie te kunnen beoordelen en potentieel gevaarlijke asteroïden beter te kunnen identificeren in termen van grootte en snelheid.
Noot voor de pers: u kan de meteorieten (1/10e van een millimeter) op aanvraag op de campus van de VUB bezichtigen
Contact:
Steven Goderis,
Analytische, Milieu- en Geochemie (AMGC)
+32 473 98 29 17
Het wetenschappelijke artikel ‘A large meteoritic event over Antarctica ca. 430 ka ago inferred from chondritic spherules from the Sør Rondane Mountains’ (M. van Ginneken - University of Kent; S. Goderis, F. Van Maldeghem, P. Claeys, B. Soens - Vrije Universiteit Brussel; N. Artemieva - Planetary Science Institute and Russian Academy of Sciences; V. Debaille - Université Libre de Bruxelles; S. Decrée - Belgian Geological Survey and Royal Belgian Institute of Natural Sciences; R. P. Harvey, K. Huwig - Case Western Reserve University; L. Hecht - Museum für Naturkunde Berlin and Freie Universität Berlin; F. E. D. Kaufmann - Museum für Naturkunde Berlin; S. Yang, M. Humayun - National High Magnetic Field Laboratory and Department of Earth; M. J. Genge - Imperial College London) werd gepubliceerd in Science Advances.
doi: 10.1126/sciadv.abc1008.
Fotomateriaal:
1) Impact-particle-SEM1-2-3: Microscopisch beeld van de buitenaardse deeltjes ontdekt door het onderzoeksteam in het Sør Rondanegebergte, in Oost-Antarctica (credit: Bastien Soens/Flore Van Maldeghem).
2) Impact-particle-micrograph: Fotografisch beeld van de buitenaardse deeltjes ontdekt door het onderzoeksteam in het Sør Rondanegebergte, nabij het Prinses Elisabethstation in Antarctica (credit: Scott Peterson / micro-meteorites.com).
3) Touchdown-impact: Artist impresssion van een touchdown impact event (credit: Mark Garlick / markgarlick.com).